18/5/12

Đề cương ôn tập cơ lý thuyết

1. Thiết lập công thức tính vận tốc, gia tốc
a. Tọa độ cực:
- Phương trình chuyển động: \left\{ {\begin{array}{ccccccccccccccc}
{r = r\left( t \right)}\\
{\varphi  = \varphi \left( t \right)}
\end{array}} \right.
 với \left\{ {\begin{array}{ccccccccccccccc}
{x = r\cos \varphi }\\
{y = r\sin \varphi }
\end{array}} \right.   (\begin{array}{l}
0 \le r = OM < \infty \\
0 \le \varphi  \le 2\pi 
\end{array})
- Chọn  {q_1} = r   ,      {{q_1}}\limits^ \circ   =  r\limits^ \circ     ,       {{e_1}}\limits^ \to   =  {{e_r}}\limits^ \to        ,     {h_1} = {h_r}
             {q_2} = \varphi   ,     {{q_2}}\limits^ \circ   =  \varphi \limits^ \circ     ,       {{e_2}}\limits^ \to   =  {{e_\varphi }}\limits^ \to       ,     {h_2} = {h_\varphi } 
{h_1} = {h_r} = \sqrt {{{\left( {\frac{{\partial x}}{{\partial r}}} \right)}^2} + {{\left( {\frac{{\partial y}}{{\partial r}}} \right)}^2} + {0^2}}  = \sqrt {{{\cos }^2}x + {{\sin }^2}x}  = 1 
{h_2} = {h_\varphi } = \sqrt {{{\left( {\frac{{\partial x}}{{\partial \varphi }}} \right)}^2} + {{\left( {\frac{{\partial y}}{{\partial \varphi }}} \right)}^2} + {0^2}}  = \sqrt {{{\left( { - r\sin \varphi } \right)}^2} + {{\left( {r\cos \varphi } \right)}^2}}  = r 
+  v\limits^ \to   = \sum\limits_i {{h_i} {{q_i}}\limits^ \circ  }  {{e_i}}\limits^ \to   = {h_r} {{q_r}}\limits^ \circ   {{e_r}}\limits^ \to   + {h_\varphi } {{q_\varphi }}\limits^ \circ   {{e_\varphi }}\limits^ \to   
        Vậy:  v\limits^ \to   =  r\limits^ \circ   {{e_r}}\limits^ \to   +  {r\varphi }\limits^ \circ   {{e_\varphi }}\limits^ \to  hay {v^2} = { r\limits^ \circ  ^2} +  {{r^2}{\varphi ^2}}\limits^{{\rm{  }} \circ }  {{e_\varphi }}\limits^ \to   
+  a\limits^ \to   = \sum\limits_i {{a_i} {{e_{_i}}}\limits^ \to  }  = {a_r} {{e_{_r}}}\limits^ \to   + {a_\varphi } {{e_\varphi }}\limits^ \to   
      * {a_r} = \frac{1}{{2{h_r}}}\left[ {\frac{d}{{dt}}\left( {\frac{{\partial {v^2}}}{{\partial  r\limits^ \circ  }}} \right) - \frac{{\partial {v^2}}}{{\partial r}}} \right] = \frac{1}{2}\left[ {\frac{d}{{dt}}\left( {2 r\limits^ \circ  } \right) - 2r{{ \varphi \limits^ \circ  }^2}} \right] 
         Vậy: {a_r} =  r\limits^{ \circ  \circ }  - r{ \varphi \limits^ \circ  ^2} 
      * {a_\varphi } = \frac{1}{{2{h_\varphi }}}\left[ {\frac{d}{{dt}}\left( {\frac{{\partial {v^2}}}{{\partial  \varphi \limits^ \circ  }}} \right) - \frac{{\partial {v^2}}}{{\partial \varphi }}} \right] = \frac{1}{{2r}}\left[ {\frac{d}{{dt}}\left( {2{r^2} r\limits^ \circ  } \right) - 0} \right] 
               = \frac{1}{r}\frac{d}{{dt}}\left( {{r^2} r\limits^ \circ  } \right) = \frac{1}{r}\left( {2r r\limits^ \circ   \varphi \limits^ \circ   + {r^2} \varphi \limits^{ \circ  \circ } } \right) 
         Vậy: {a_\varphi } = 2 r\limits^ \circ   \varphi \limits^ \circ   + r \varphi \limits^{ \circ  \circ }

Không có nhận xét nào:

Đăng nhận xét